Tous les résultats sportifs en temps réel
Tous les résultats sportifs en temps réel
Choix d'une saison :
La Coupe du Monde Eaux Plates à Szeged de canoë-kayak 2018 est la 4ème édition de cette épreuve. La compétition a eu lieu du 18 au 20 mai 2018 à Szeged en Hongrie. Le vainqueur du vl2 (v1 ta) 200m hommes 2018 est Marius Bogdan Ciustea.
Hongrie - Szeged - 18 Mai 2018 - 20 Mai 2018
1 | ![]() | 3:44.989 |
2 | ![]() | 3:47.283 |
3 | ![]() | 3:47.361 |
4 | ![]() | 3:47.417 |
5 | ![]() | 3:50.255 |
6 | ![]() | 3:50.361 |
7 | ![]() | 3:50.617 |
8 | ![]() | 3:50.722 |
9 | ![]() | 3:58.789 |
1 | ![]() | 3:52.894 |
2 | ![]() | 3:53.832 |
3 | ![]() | 3:53.988 |
4 | ![]() | 3:54.182 |
5 | ![]() | 3:55.705 |
6 | ![]() | 3:55.760 |
7 | ![]() | 3:56.288 |
8 | ![]() | 4:01.794 |
9 | ![]() | 4:05.366 |
1 | ![]() | 3:44.989 |
2 | ![]() | 3:47.283 |
3 | ![]() | 3:47.361 |
4 | ![]() | 3:47.417 |
5 | ![]() | 3:50.255 |
6 | ![]() | 3:50.361 |
7 | ![]() | 3:50.617 |
8 | ![]() | 3:50.722 |
9 | ![]() | 3:58.789 |
1 | ![]() | 1:26.893 |
2 | ![]() | 1:27.809 |
3 | ![]() | 1:27.982 |
4 | ![]() | 1:28.048 |
5 | ![]() | 1:28.776 |
6 | ![]() | 1:28.882 |
7 | ![]() | 1:29.176 |
8 | ![]() | 1:29.382 |
9 | ![]() | 1:29.721 |
1 | ![]() | 1:29.204 |
2 | ![]() | 1:29.965 |
3 | ![]() | 1:30.392 |
4 | ![]() | 1:31.048 |
5 | ![]() | 1:31.104 |
6 | ![]() | 1:32.220 |
7 | ![]() | 1:33.909 |
8 | ![]() | 1:35.526 |
1 | ![]() | 1:26.893 |
2 | ![]() | 1:27.809 |
3 | ![]() | 1:27.982 |
4 | ![]() | 1:28.048 |
5 | ![]() | 1:28.776 |
6 | ![]() | 1:28.882 |
7 | ![]() | 1:29.176 |
8 | ![]() | 1:29.382 |
9 | ![]() | 1:29.721 |
1 | ![]() | 3:31.653 |
2 | ![]() | 3:32.759 |
3 | ![]() | 3:33.448 |
4 | ![]() | 3:33.498 |
5 | ![]() | 3:33.753 |
6 | ![]() | 3:35.175 |
7 | ![]() | 3:36.681 |
8 | ![]() | 3:36.692 |
9 | ![]() | 3:41.709 |
1 | ![]() | 3:31.653 |
2 | ![]() | 3:32.759 |
3 | ![]() | 3:33.448 |
4 | ![]() | 3:33.498 |
5 | ![]() | 3:33.753 |
6 | ![]() | 3:35.175 |
7 | ![]() | 3:36.681 |
8 | ![]() | 3:36.692 |
9 | ![]() | 3:41.709 |
1 | ![]() | 3:34.082 |
2 | ![]() | 3:35.471 |
3 | ![]() | 3:35.599 |
4 | ![]() | 3:35.977 |
5 | ![]() | 3:37.149 |
6 | ![]() | 3:38.288 |
7 | ![]() | 3:38.982 |
8 | ![]() | 3:42.877 |
9 | ![]() | 3:48.632 |
1 | ![]() | 3:31.653 |
2 | ![]() | 3:32.759 |
3 | ![]() | 3:33.448 |
4 | ![]() | 3:33.498 |
5 | ![]() | 3:33.753 |
6 | ![]() | 3:35.175 |
7 | ![]() | 3:36.681 |
8 | ![]() | 3:36.692 |
9 | ![]() | 3:41.709 |
1 | ![]() | 38.426 |
2 | ![]() | 38.504 |
3 | ![]() | 38.738 |
4 | ![]() | 39.104 |
5 | ![]() | 39.160 |
6 | ![]() | 39.565 |
7 | ![]() | 39.688 |
8 | ![]() | 40.560 |
9 | ![]() | 41.815 |
1 | ![]() | 40.049 |
2 | ![]() | 40.932 |
3 | ![]() | 41.349 |
4 | ![]() | 41.393 |
5 | ![]() | 41.537 |
6 | ![]() | 42.587 |
7 | ![]() | 42.782 |
8 | ![]() | 43.260 |
9 | ![]() | 43.487 |
1 | ![]() | 38.426 |
2 | ![]() | 38.504 |
3 | ![]() | 38.738 |
4 | ![]() | 39.104 |
5 | ![]() | 39.160 |
6 | ![]() | 39.565 |
7 | ![]() | 39.688 |
8 | ![]() | 40.560 |
9 | ![]() | 41.815 |
1 | ![]() | 1:43.669 |
2 | ![]() | 1:44.253 |
3 | ![]() | 1:45.214 |
4 | ![]() | 1:46.230 |
5 | ![]() | 1:46.736 |
6 | ![]() | 1:47.236 |
7 | ![]() | 1:47.580 |
8 | ![]() | 1:48.219 |
9 | ![]() | 1:49.553 |
1 | ![]() | 1:48.639 |
2 | ![]() | 1:49.184 |
3 | ![]() | 1:49.900 |
4 | ![]() | 1:50.506 |
5 | ![]() | 1:50.634 |
6 | ![]() | 1:51.461 |
7 | ![]() | 1:51.745 |
8 | ![]() | 1:52.011 |
9 | ![]() | 1:56.784 |
1 | ![]() | 1:43.669 |
2 | ![]() | 1:44.253 |
3 | ![]() | 1:45.214 |
4 | ![]() | 1:46.230 |
5 | ![]() | 1:46.736 |
6 | ![]() | 1:47.236 |
7 | ![]() | 1:47.580 |
8 | ![]() | 1:48.219 |
9 | ![]() | 1:49.553 |
1 | ![]() | 33.844 |
2 | ![]() | 34.044 |
3 | ![]() | 34.083 |
4 | ![]() | 34.149 |
5 | ![]() | 34.177 |
6 | ![]() | 34.233 |
7 | ![]() | 34.299 |
8 | ![]() | 34.955 |
9 | ![]() | 34.988 |
1 | ![]() | 34.582 |
2 | ![]() | 34.976 |
3 | ![]() | 34.982 |
4 | ![]() | 35.071 |
5 | ![]() | 35.198 |
6 | ![]() | 35.310 |
7 | ![]() | 35.410 |
8 | ![]() | 35.560 |
9 | ![]() | 35.976 |
1 | ![]() | 35.265 |
2 | ![]() | 35.310 |
3 | ![]() | 35.621 |
4 | ![]() | 35.726 |
5 | ![]() | 35.854 |
6 | ![]() | 35.910 |
7 | ![]() | 35.932 |
8 | ![]() | 35.943 |
9 | ![]() | 36.393 |
1 | ![]() | 33.844 |
2 | ![]() | 34.044 |
3 | ![]() | 34.083 |
4 | ![]() | 34.149 |
5 | ![]() | 34.177 |
6 | ![]() | 34.233 |
7 | ![]() | 34.299 |
8 | ![]() | 34.955 |
9 | ![]() | 34.988 |
1 | ![]() | 1:35.149 |
2 | ![]() | 1:35.266 |
3 | ![]() | 1:36.505 |
4 | ![]() | 1:36.616 |
5 | ![]() | 1:37.333 |
6 | ![]() | 1:37.560 |
7 | ![]() | 1:37.733 |
8 | ![]() | 1:37.860 |
9 | ![]() | 1:44.466 |
1 | ![]() | 1:37.464 |
2 | ![]() | 1:37.703 |
3 | ![]() | 1:38.026 |
4 | ![]() | 1:38.814 |
5 | ![]() | 1:40.159 |
6 | ![]() | 1:40.464 |
7 | ![]() | 1:40.548 |
8 | ![]() | 1:40.576 |
9 | ![]() | 1:40.820 |
1 | ![]() | 1:38.603 |
2 | ![]() | 1:39.092 |
3 | ![]() | 1:39.681 |
4 | ![]() | 1:39.836 |
5 | ![]() | 1:39.942 |
6 | ![]() | 1:40.814 |
7 | ![]() | 1:41.181 |
8 | ![]() | 1:41.781 |
9 | ![]() | 1:42.025 |
1 | ![]() | 1:35.149 |
2 | ![]() | 1:35.266 |
3 | ![]() | 1:36.505 |
4 | ![]() | 1:36.616 |
5 | ![]() | 1:37.333 |
6 | ![]() | 1:37.560 |
7 | ![]() | 1:37.733 |
8 | ![]() | 1:37.860 |
9 | ![]() | 1:44.466 |
1 | ![]() | 1:18.002 |
2 | ![]() | 1:18.291 |
3 | ![]() | 1:18.430 |
4 | ![]() | 1:18.491 |
5 | ![]() | 1:18.613 |
6 | ![]() | 1:19.758 |
7 | ![]() | 1:20.313 |
8 | ![]() | 1:21.096 |
9 | ![]() | 1:22.174 |
1 | ![]() | 1:19.627 |
2 | ![]() | 1:19.638 |
3 | ![]() | 1:21.054 |
4 | ![]() | 1:21.199 |
5 | ![]() | 1:21.227 |
6 | ![]() | 1:21.615 |
7 | ![]() | 1:21.693 |
8 | ![]() | 1:21.965 |
9 | ![]() | 1:22.382 |
1 | ![]() | 1:18.002 |
2 | ![]() | 1:18.291 |
3 | ![]() | 1:18.430 |
4 | ![]() | 1:18.491 |
5 | ![]() | 1:18.613 |
6 | ![]() | 1:19.758 |
7 | ![]() | 1:20.313 |
8 | ![]() | 1:21.096 |
9 | ![]() | 1:22.174 |